r

Y

The Universit
of Mancheste

MANCHESTER
1824

ormal
ethods
roup

iProver-Eq: An Instantiation-based
Theorem Prover with Equality

Konstantin Korovin and Christoph Sticksel
(joint work with Renate Schmidt)

The University of Manchester

17th July 2010

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality

e Instantiation-based methods
— Decision procedure for Bernays-Schénfinkel fragment
(verification, planning/scheduling, knowledge
representation)
— Performs well in plain first-order logic
— Complementary to “traditional” first-order calculi

e Equational reasoning

— Essential part in theory reasoning
— Natural concept in many applications
— Not well explored in instantiation-based setting

¢ Here: Instantiation-based calculus Inst-Gen-Eq
— Ganzinger and Korovin [2004]

— Complete for first-order clause logic modulo equality

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality

iProver is the implementation of the Inst-Gen calculus
where equality is handled only axiomatically

iProver-Eq is the extension of iProver with
superposition-based equational reasoning

Distinctive feature: modular combination of first-order
reasoning and ground satisfiability checking

Proof procedure consists of
— Ground reasoning on the abstraction of the clause set by
an SMT solver
— Equational reasoning on first-order literals in a candidate
model
— Instantiation of clauses with substitutions from
superposition proofs

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality

iIProver-Eq System Overview

J

1
1
1
1
Superposition 1+ SMT solver
W :
1
Clause Conflicting |
Instances Literals ! Ground
~— select | Model
1
1
First-order abstract | Ground
Clauses ! Clauses
1
. . e !
Satisfiability : Unsatisfiability
proved proved

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality

Inst-Gen-Eq by Example: Finding inconsistencies

First-order clauses

Inst-Gen-Eq by Example: Finding inconsistencies

First-order clauses
f(L, L) =f(L,1)
fLL)#g(l) v L=l
f(a,b) =~ g(c)

a?b

Inst-Gen-Eq by Example: Finding inconsistencies

First-order clauses
f(L, L) =f(L,1)
fLL)#g(l) v L=l
f(a,b) =~ g(c)

a?b

Inst-Gen-Eq by Example: Finding inconsistencies

First-order clauses

L) ~f(L, 1)
fL, D) #e(l) v L>l
fla,b) ~ g(c)

a®b

Unit superpogition proof: Selected Iitekls inconsistent

fOy) =f(,x) fu,v) #8(2)
fla,b) ~ g(c) fv,u) #8(2)

ACETCIWS

[u/x,v/y]
a/v,b/u]

Inst-Gen-Eq by Example: Generating instances

Unit superposition proof: Substitution extraction
fy) = f(y,x) flu,v) £ 8(2)

f(a,b) ~ g(c) fv,u) #8(2)

ECETCINE

[u/x,v/)]
a/v,b/u]

First-order clauses

Inst-Gen-Eq by Example: Generating instances

Unit superposition proof: Substitution extraction
fo,y) =f,x) fu,v) #8(2)
fla,b) = g(c) F) # 602 e
a,b) ~ g(c v, U g(z
afv.bju =

CCETCEW

First-order clauses

Inst-Gen-Eq by Example: Generating instances

Unit superposition proofM
fy) = f(y,x) flu,v) £ 8(2)

f()— () f(t u) (Z) [/ ’ /]
a’b ~ g(c , ?ég

CCETCEW

First-order clauses

Inst-Gen-Eq by Example: Generating instances

Unit superposition proof@m
f(x,y) z/f(MFf(u, v) £ 8(2)

f(— () f(t u) (Z) [/ ’ /]
a, ~ g(c , ?ég

CCETCRW

First-order clauses

Inst-Gen-Eq by Example: Generating instances

Unit superposition proofM
f(x,y) z/f(MFf(u, v) £ 8(2)

f(— () f(t u) (Z) [/ ’ /]
a, ~ g(c , ?ég

CCETCRW

First-order clauses First-order instances

Answer computation and completeness

Unit superposition proof

fey) =f(,x) flu,v) #g(2)
fla,b) ~ g(c) fv,u) # 8(2)

g(c) #8(2)
—g — l/d]

[u/x,v/5]

[a/v,b/u]

e Instances from all proofs from selected literals required

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality

Answer computation and completeness

Unit superposition proof

fx,y) =f(,x) f(u,v) #g(2)
fla,b) ~ g(c) fv,u) # g(2)

g(c) # g(2)
—g — l/d]

[u/x,v/5]

[a/v,b/ul

e Instances from all proofs from selected literals required
e Shorter proofs do not subsume longer proofs

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality

Unit superposition proof

f,y) =fv,x) flu,v) % g(z)
f(a,b) ~ g(c) fv,u) #g(2)

g(c) #8(2)
—g — l/d]

[u/x,v/5]

[a/v,b/u]

e Instances from all proofs from selected literals required
e Shorter proofs do not subsume longer proofs
e Literal variants may occur in the same proof

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality

e Find inconsistent first-order literals
e Compute instantiating substitutions in labels

Superposition
T:l~=r T L[l

(TN T)o: Lir] (o) o is mgu of and /'
ag. rio
Variant merging
T:LT':L
————— (0 _ 7/
70791 O L=L9
Equality resolution
w (o) o is mgu of / and r

To:0O

e Uniform treatment of literal variants
e Preserve proof structure for redundancy elimination

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality

iProver-Eq is an instantiation-based automated theorem
prover for first-order clause logic

Labelled unit superposition calculus generates instances

Modularly integrates any SMT solver as ground solver
Currently CVC3, any other can be used, Z3 or Yices, e.g.

Written in OCaml, using C/C++ interface of SMT solvers

Currently running in this year's CASC

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality

