
iProver-Eq: An Instantiation-based
Theorem Prover with Equality

Konstantin Korovin and Christoph Sticksel
(joint work with Renate Schmidt)

The University of Manchester

17th July 2010

φormalµethodsγ roup

1

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



2

Instantiation-based Methods and Equality

• Instantiation-based methods
– Decision procedure for Bernays-Schönfinkel fragment

(verification, planning/scheduling, knowledge
representation)

– Performs well in plain first-order logic
– Complementary to “traditional” first-order calculi

• Equational reasoning
– Essential part in theory reasoning
– Natural concept in many applications
– Not well explored in instantiation-based setting

• Here: Instantiation-based calculus Inst-Gen-Eq
– Ganzinger and Korovin [2004]
– Complete for first-order clause logic modulo equality

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



3

What is iProver-Eq?

• iProver is the implementation of the Inst-Gen calculus
where equality is handled only axiomatically

• iProver-Eq is the extension of iProver with
superposition-based equational reasoning

• Distinctive feature: modular combination of first-order
reasoning and ground satisfiability checking

• Proof procedure consists of
– Ground reasoning on the abstraction of the clause set by

an SMT solver
– Equational reasoning on first-order literals in a candidate

model
– Instantiation of clauses with substitutions from

superposition proofs

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



4

iProver-Eq System Overview

Ground
Clauses

Ground
Model

Unsatisfiability
proved

Satisfiability
proved

First-order 
Clauses

Conflicting
Literals

Clause
Instances

find

generate

add

select

abstract

First-order Ground

Superposition SMT solver

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



5

Inst-Gen-Eq by Example: Finding inconsistencies

First-order clauses

f (x, y) ' f (y, x)

f (u, v) 6' g(z) ∨ u ' z

f (a, b) ' g(c)

a 6' b

Ground abstraction

f (⊥,⊥) ' f (⊥,⊥)

f (⊥,⊥) 6' g(⊥) ∨ ⊥ ' ⊥

f (a, b) ' g(c)

a 6' b

Unit superposition proof: Selected literals inconsistent

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



5

Inst-Gen-Eq by Example: Finding inconsistencies

First-order clauses

f (x, y) ' f (y, x)

f (u, v) 6' g(z) ∨ u ' z

f (a, b) ' g(c)

a 6' b

Ground abstraction

f (⊥,⊥) ' f (⊥,⊥)

f (⊥,⊥) 6' g(⊥) ∨ ⊥ ' ⊥

f (a, b) ' g(c)

a 6' b

Unit superposition proof: Selected literals inconsistent

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



5

Inst-Gen-Eq by Example: Finding inconsistencies

First-order clauses

f (x, y) ' f (y, x)

f (u, v) 6' g(z) ∨ u ' z

f (a, b) ' g(c)

a 6' b

Ground abstraction

f (⊥,⊥) ' f (⊥,⊥)

f (⊥,⊥) 6' g(⊥) ∨ ⊥ ' ⊥

f (a, b) ' g(c)

a 6' b

Unit superposition proof: Selected literals inconsistent

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



5

Inst-Gen-Eq by Example: Finding inconsistencies

First-order clauses

f (x, y) ' f (y, x)

f (u, v) 6' g(z) ∨ u ' z

f (a, b) ' g(c)

a 6' b

Ground abstraction

f (⊥,⊥) ' f (⊥,⊥)

f (⊥,⊥) 6' g(⊥) ∨ ⊥ ' ⊥

f (a, b) ' g(c)

a 6' b

Unit superposition proof: Selected literals inconsistent

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



6

Inst-Gen-Eq by Example: Generating instances

Unit superposition proof: Substitution extraction

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

First-order clauses

f (x, y) ' f (y, x)

f (u, v) 6' g(z) ∨ u ' z

f (a, b) ' g(c)

a 6' b

First-order instances

f (b, a) ' f (a, b)

f (b, a) 6' g(c) ∨ b ' c

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



6

Inst-Gen-Eq by Example: Generating instances

Unit superposition proof: Substitution extraction

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

First-order clauses

f (x, y) ' f (y, x)

f (u, v) 6' g(z) ∨ u ' z

f (a, b) ' g(c)

a 6' b

First-order instances

f (b, a) ' f (a, b)

f (b, a) 6' g(c) ∨ b ' c

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



6

Inst-Gen-Eq by Example: Generating instances

Unit superposition proof: Substitution extraction

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

First-order clauses

f (x, y) ' f (y, x)

f (u, v) 6' g(z) ∨ u ' z

f (a, b) ' g(c)

a 6' b

First-order instances

f (b, a) ' f (a, b)

f (b, a) 6' g(c) ∨ b ' c

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



6

Inst-Gen-Eq by Example: Generating instances

Unit superposition proof: Substitution extraction

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

First-order clauses

f (x, y) ' f (y, x)

f (u, v) 6' g(z) ∨ u ' z

f (a, b) ' g(c)

a 6' b

First-order instances

f (b, a) ' f (a, b)

f (b, a) 6' g(c) ∨ b ' c

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



6

Inst-Gen-Eq by Example: Generating instances

Unit superposition proof: Substitution extraction

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

First-order clauses

f (x, y) ' f (y, x)

f (u, v) 6' g(z) ∨ u ' z

f (a, b) ' g(c)

a 6' b

First-order instances

f (b, a) ' f (a, b)

f (b, a) 6' g(c) ∨ b ' c

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



7

Answer computation and completeness

Unit superposition proof

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

• Instances from all proofs from selected literals required
• Shorter proofs do not subsume longer proofs
• Literal variants may occur in the same proof

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



7

Answer computation and completeness

Unit superposition proof

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

• Instances from all proofs from selected literals required
• Shorter proofs do not subsume longer proofs
• Literal variants may occur in the same proof

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



7

Answer computation and completeness

Unit superposition proof

f (a, b) ' g(c)

f (x, y) ' f (y, x) f (u, v) 6' g(z)
[u/x, v/y]

f (v, u) 6' g(z)
[a/v, b/u]

g(c) 6' g(z)
[c/z]

�

• Instances from all proofs from selected literals required
• Shorter proofs do not subsume longer proofs
• Literal variants may occur in the same proof

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



8

Labelled Unit Superposition

• Find inconsistent first-order literals
• Compute instantiating substitutions in labels

Superposition

T : l ' r T ′ : L[l′]
(σ)

(T u T ′)σ : L[r]σ
σ is mgu of l and l′

Variant merging

T : L T ′ : L′
(θ)

T t T ′θ : L
L = L′θ

Equality resolution

T : (l 6' r)
(σ)T σ : �

σ is mgu of l and r

• Uniform treatment of literal variants
• Preserve proof structure for redundancy elimination

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality



9

Summary

• iProver-Eq is an instantiation-based automated theorem
prover for first-order clause logic

• Labelled unit superposition calculus generates instances

• Modularly integrates any SMT solver as ground solver
• Currently CVC3, any other can be used, Z3 or Yices, e.g.

• Written in OCaml, using C/C++ interface of SMT solvers

• Currently running in this year’s CASC

Konstantin Korovin and Christoph Sticksel iProver-Eq: An Instantiation-based ATP with Equality


